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Abstract. A partial wave analysis of PS185 data for p̄p → Λ̄Λ is presented. A 3S1 cusp is identified in
the inverse process Λ̄Λ → p̄p at threshold, using detailed balance to deduce cross sections from p̄p → Λ̄Λ.
Partial wave amplitudes for p̄p 3P0, 3F3, 3D3 and 3G3 exhibit a behaviour very similar to resonances
observed in Crystal Barrel data. With this identification, the p̄p → Λ̄Λ data then provide evidence for a
new I = 0, JPC = 1−− resonance with mass M = 2290 ± 20 MeV, Γ = 275 ± 35 MeV, coupling to both
3S1 and 3D1.

1 Introduction

ThePS185 collaboration hasmade extensivemeasurements
of p̄p → Λ̄Λ at LEAR. Integrated cross sections have been
measured at fine steps of momentum close to the Λ̄Λ thresh-
old [1–4]; [4] summarises results. Differential cross sections
extend up to 1990 MeV/c. The decays of Λ and Λ̄ anal-
yse their polarisation Py = A00N0 = A000N and measure
spin correlations CNN , CSS , CLL and CLS = CSL [5]. Data
from a polarised target provide further measurements with
target polarisation normal to the scattering plane [6].

An early partial wave analysis close to threshold was
made by Tabakin et al. [7]. The objective here is to extend
the partial wave analysis over the whole momentum range,
including polarised target data.

There are six spin dependent amplitudes for p̄p →
Λ̄Λ [8], one more than for NN and N̄N elastic scatter-
ing, where particles in initial and final states are identical.
There are 6 further measurements from the polarised tar-
get. Firstly the asymmetry A0N00 from the polarised target
is different to A00N0 because the nucleon and Λ are different
particles. Secondly, there are rather precise measurements
of spin transfer parameters DNN and KNN . Thirdly, the
triple spin parameters C0NSS , C0NLS and C0NSL are inde-
pendent measurements. Here, the first suffix refers to the p̄
beam, which is unpolarised, the second refers to the target
proton, the third refers to the Λ̄ and the fourth refers to the
Λ. Further measurements of C0NLL and C0NNN are redun-
dant. Paschke and Quinn [9] show that C0NSS = −C0NLL,
although both sets of data can be included in the analysis,
to improve statistics. Also A0NNN = A0N00; the latter is
much better determined than A0NNN .

There is then a chance of determining the six ampli-
tudes up to an overall unmeasurable phase. In principle
eleven sets of data are sufficient providing they explore
all amplitudes in an ideal way. In practice, it turns out
that the determination is almost unique at 1637 MeV/c,
the only momentum where polarised target data are avail-

able. There are some minor reservations concerning relative
branchings to 3F2 and 3P2 and between 3D1 and 3S1. It is
necessary to apply a mild constraint to partial wave ampli-
tudes for 3P2 → 3F2 and 3F2 → 3P2, in order to prevent
them drifting to large values. It is also necessary to make
the simplifying assumption that, away from 1637 MeV/c,
3D1 → 3S1 and 3D1 → 3D1 amplitudes are related to
3S1 → 3S1 by simple centrifugal barrier factors. In the
limited mass range over which data are available, these are
mild assumptions, which have little effect on the determi-
nation of other partial waves.

The available mass range extends only 200 MeV above
the Λ̄Λ threshold. Resonances typically have widths of
250 MeV, so it is difficult to establish the presence of res-
onances from PS185 data alone. Nonetheless, results can
be compared with analyses of Crystal Barrel and PS172
data having the same quantum numbers. In those data, a
mass range of 500 MeV is available. For I = 0, C = +1,
there are seven sets of data from these two experiments for
final states π0π0, ηη, ηη′, ηπ0π0, η′π0π0, 3η and π−π+;
in addition there is some information from the produc-
tion procss p̄p → (ηπ0π0)η. From those extensive data,
many resonances are observed with securely determined
parameters [10]. It is of interest to see if those resonances
corresponds to structures observed in p̄p → Λ̄Λ. That is
quite likely, in the same way that JP = 0+ resonances
appear in both ππ and KK̄ channels.

2 A cusp at the Λ̄Λ threshold

Figure 1a shows integrated cross sections very close to
threshold for p̄p → Λ̄Λ. The curve shows the S-wave in-
tensity deduced later from the partial wave analysis; the
remaining intensity comes from P-waves in this mass range.

The cross section for the inverse process Λ̄Λ → p̄p may
be derived using detailed balance:

σ(Λ̄Λ → p̄p) = (p/k)2σ(p̄p → Λ̄Λ) . (1)
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Fig. 1. a Integrated cross sections for p̄p → Λ̄Λ; the curve
shows the S-wave cross section from the amplitude analysis;
b the corresponding cross section for Λ̄Λ → p̄p; the curve is the
fitted S-wave intensity; c σ(Λ̄Λ → p̄p)×k v. excitation energy,
after subtracting the P-wave intensity

Here, p and k are momenta of p and Λ in the centre of
mass frame. Figure 1b shows the resulting cross sections
for Λ̄Λ → p̄p. There is a cusp at threshold, first reported
in [11]. Cusps are in principle well known, but are not often
seen, so this case is interesting.

The cusp is a feature of S-waves. The curve shows the
fitted S-wave intensity; in this mass range, the difference
from data is purely due to P-waves. These P-waves are
surprisingly strong near threshold, but are very well de-
termined from polarisations and forward-backward asym-
metries in differential cross sections (Fig. 2 below). The
PS185 collaboration makes the reasonable conjecture that
the S-wave is strongly absorbed into other open channels,
whereas in this mass range P-waves are highly peripheral
and therefore suffer little attenuation from annihilation.
Up to 6 MeV, P-waves have momenta k < 85 MeV/c, and
therefore a classical impact parameter > 2.3 fm.

The curve follows the familiar 1/v law of thermal neu-
tron physics. The 1/v dependence is verified in Fig. 1c,
where σ(Λ̄Λ → p̄p) × k is plotted after subtracting off the
contributions from P-waves.

Itwill be useful to exhibit the origin of the cusp assuming
there is an S-wave resonance, which will be fitted later to
the data. The result is however quite general and is derived
in the textbook of Landau and Lifshitz [12]. For an S-wave
resonance, the partial wave amplitude is

fs(p̄p → Λ̄Λ) =
1
p

√
Γp̄p(s)ΓΛ̄Λ(s)

D(s)
, (2)

where D(s) = M2 − s − m(s) − iMΓtot(s); the term m(s)
in the denominator D(s) will be discussed below. Since
ΓΛ̄Λ ∝ k and Γp̄p ∝ p near threshold,

fs(p̄p → Λ̄Λ) ∝
√

k/p

D(s)
. (3)

The amplitude for Λ̄Λ elastic scattering is

fs(Λ̄Λ → Λ̄Λ) =
1
k

ΓΛ̄Λ(s)
D(s)

. (4)

Apart from a slow energy dependence from D(s), the ampli-
tude goes to a constant at threshold, namely the scattering
length a. The amplitude for Λ̄Λ → pp is

fs(Λ̄Λ → p̄p) =
1
k

√
Γp̄p(s)ΓΛ̄Λ(s)

D(s)
, (5)

and is proportional to (p/k)1/2/D(s) at threshold. The
intensity |fS(Λ̄Λ → p̄p)|2 ∝ 1/k, apart from the slowly
varying factor p/|D(s)|2. This is the origin of the 1/v law.

At threshold there is a step in Im fs(Λ̄Λ → Λ̄Λ). Associ-
ated with this step is a rapid variation of Re fs(Λ̄Λ → Λ̄Λ),
i.e. a dispersive effect. For a resonance, m(s) of eqn. (3) is
given [13] by

m(s) =
M2 − s

π

∫
Im fs(s′) ds′

(M2 − s′)(s′ − s)
, (6)

where a subtraction is made on resonance. This formula
will be used in fitting an S-wave resonance to the data.

For higher partial waves, the centrifugal barrier makes
cusp effects negligible.

3 Data and analysis procedures

Figures 2–9 show the PS185 data, together with fits de-
scribed here.

3.1 Formulae for observables
and partial wave amplitudes

Elchikh and Richard [8] show that six amplitudes are
needed to describe p̄p → Λ̄Λ. Formulae for observables
are readily adapted from the well known expressions for
NN elastic scattering [14]. They have also been written
down by Paschke and Quinn [9]. However, one needs to
be aware that Paschke and Quinn quantise along the same
axes for initial and final states. Suppose the y-axis is taken
normal to the scattering plane, z along the beam direction
and x sideways in the plane of scattering. For spin transfer
parameters, the expressions of Paschke and Quinn describe
observables such as A0yxz, with x and z in the same direc-
tion for initial and final states. The PS185 collaboration
uses for the initial p̄p state the same axes x, y, z. However,
for the final state, they use axes x′, y and z′ with z′ along
the direction of the final Λ̄. It is necessary to allow for the
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rotation of spins through the scattering angle θ between
initial and final states. For triplet states, this involves a
simple projection of spins as vectors from one set of axes
to the other. For singlet states, the rotation of axes has
no effect.

3.2 Parametrisation of partial wave amplitudes

Partial wave amplitudes need to include three standard
factors: (a) the 1/p flux factor for the centre of mass mo-
mentum p in the p̄p channel, (b) the relativistic phase space
factor

√
ρ1 = (2p/

√
s)1/2 for the p̄p channel and the factor

Fig. 2. Fit to differential cross sections for p̄p → Λ̄Λ; lab
momenta are indicated in each panel in MeV/c

Fig. 3. Fit to hyperon polarisations Py for p̄p → Λ̄ Λ

Fig. 4. Fit to the spin correlation parameter CSS for p̄p → Λ̄Λ;
S is the component of spin transverse to the beam and in the
plane of scattering

Fig. 5. Fit to the spin correlation parameter CSL for p̄p → Λ̄Λ;
S is as in Fig. 4 and L is the longitudinal component of spin

Fig. 6. Fit to spin correlation parameter CNN for p̄p → Λ̄Λ;
N is the component of spin normal to the scattering plane
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Fig. 7. Fit to spin correlation parameters CLL for p̄p → Λ̄Λ;
L is the longitudinal component of spin

Fig. 8. Fit to spin transfer parameters for p̄p → Λ̄Λ; D refers
to spin transfer from proton to Λ and K to spin transfer
from proton to Λ̄; the dashed curve shows the fit omitting
the 3G3 → 3D3 amplitude; data are at a beam momentum of
1637 MeV/c

(2k/
√

s)1/2 for Λ̄Λ, (c) Blatt-Weiskopf centrifugal barrier
factors for both p̄p and Λ̄Λ channels [15]; they give the
required kL dependence near threshold on angular momen-
tum L and momentum k is the Λ̄Λ channel. The product
of these three factors will be written as G(s). Then partial
wave amplitudes for spin J , angular momemta � and L in
intial and final states FJ,�,L(s) are written:

FJ,�,L(s) = GJ,�,L(s)fJ,�,L(s) , (7)

where f(s) are analytic funcions. Note that the factor G(s)
must be factored out in order to avoid branch cuts be-
low threshold.

Data at 1637 MeV/c are adequate to give a unique set
of partial waves. At other momenta, the analysis reveals
quickly that the transition amplitude 3S1 → 3D1 is well
determined by the polarisations of Λ and Λ̄. The data are
consistentwith the same s-dependence for this amplitude as
for 3S1 → 3S1, except for the centrifugal barrier factor for
the D-wave. The radius of the centrifugal barrier optimises
at R = 1.1 fm. To simplify the analysis, the 3S1 → 3S1
amplitude is parametrised with coupling constant g1 and

Fig. 9. Fit to the asymmetry A from the polarised target for
p̄p → Λ̄Λ and to triple spin parameters. Data are at a beam
momentum of 1637 MeV/c

the 3S1 → 3D1 transition amplitude is parametrised with
coupling constant g1h1, where h1 is a complex constant.

The separation between 3D1 and 3S1 initial states is sen-
sitive only to polarised target data. Therefore, the 3D1 →
3S1 amplitude is parametrised with coupling constant g1h

′
1,

and it is necessary to assume that h′
1 does not vary with

s. The same is true for the 3D1 → 3D1 amplitude which
is fitted with coupling constant g1h

′′
1 with h′′

1 constant.
Physically, the implication is that the branching ratio of
Λ̄Λ does not change with mass. These assumption are of
little consequence at low momenta because the L = 2 cen-
trifugal barrier suppresses the amplitude near threshold
for initial D-states.

Partial waves for 2+, 3− and 4+ are treated in the
same way. Care is needed even at 1637 MeV/c in handling
the amplitude for 3F2 → 3P2. With present data, the
separation of the four 2+ amplitudes, abbreviated as fPP ,
fPF , fFP and fFF , is the weakest link in the entire analysis.
The fFF amplitude is small and not a matter for concern.
The fPF amplitude is well determined by polarisations
of Λ and Λ̄ and differential cross sections. However, the
fFP amplitude shows some tendency to drift upwards in
magnitude with only a small change in χ2. The problem is
cured by including into χ2 a weak penalty function which
limits itsmagnitude.Thepenalty function adds toχ2 a term

∆χ2 =
|fFP |2
∆2

FP

,

and the denominator ∆2
FP is adjusted so that this term

contributes 9 to χ2. This technique allows FFP to grow if
the data really demands it, but constrains it from running
away with little change in χ2. Below 1637 MeV/c, the fit is
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Table 1. Changes in χ2 when individual partial waves are
dropped from the fit and other amplitudes are re-optimised

Amplitude Change in χ2

3S1 → 3S1 1894
3S1 → 3D1 271
3D1 → 3S1 56
3D1 → 3D1 50
3P0 98
3P1 248
3P2 → 3P2 1337
3P2 → 3F2 69
3F2 → 3P2 749
3F2 → 3F2 34
3D2 51
3D3 → 3D3 681
3G3 → 3D3 177
3F3 242
3F4 → 3F4 684
3H4 → 3F4 111
3G4 108
1S0 15
1P1 25

insensitive to this restriction, but above 1637 MeV/c, there
may be some sensitivity. Further data from a polarised tar-
get at high momentum would solve this possible problem.

For JP = 3− and 4+, contributions from 3G3 → 3G3,
3D3 → 3G3 and 3F4 → 3H4 are negligible because of
centrifugal barriers in Λ̄Λ. Both the inverse amplitudes
3G3(p̄p) → 3D3(Λ̄Λ) and 3H4 → 3F4 are definitely re-
quired. Surprisingly, the 3G4 → 3G4 is also definitely re-
quired; 5− amplitudes are negligible.

Table 1 shows changes in χ2 when partial waves are
removed from the final fit one by one and remaining am-
plitudes are re-optimised. The singlet partial waves 1S0
and 1P1 are very small, as the PS185 collaboration found
earlier. Any partial waves affecting χ2 by < 10 are elimi-
nated.

The initial fits take fJ(s) to be constants (where pos-
sible) or linear with s, except for the threshold cusp. In
no case does the phase decrease with s. In several partial
waves, large linear terms were required, producing phase
variations of order 90◦. An empirical linear fit to the phase
begs the question where the phase originates. It rapidly
became apparent that better fits could be obtained by al-
lowing a resonant phase variation in some partial waves.

A resonance with a large width gives an essentially lin-
ear phase variation. Therefore the final analysis uses con-
stant amplitudes plus a resonant form for all partial waves,
though allowing the resonance width to go to a large value
if the data prefer the linear phase variation. This allows a
rather flexible parametrisation of the s-dependence.

Fig. 10. Contributions of partial wave amplitudes to the in-
tegrated cross section; a beam momentum of 1637 MeV/c cor-
responds to ∆M = 71 MeV, M = 2302.5 MeV

In the final fit, the cusp in the 3S1 amplitude is fitted
by taking the amplitude

f =
1

M2 − s − m(s) − iM [Γ0 + ΓΛ̄Λ(s)]
, (8)

ΓΛ̄Λ = C
√

1 − 4M2
Λ/s , (9)

and taking m(s) from eqn. (6). The magnitude of the con-
stant C in the ΛΛ width is adjusted so as to reproduce the
observed total intensity of the 3S1 and 3D1 partial waves,
and using the same C for coupling to p̄p and Λ Λ.

4 Results

The χ2 of the fit is 1377 for 1201 data points and 61 fitted
parameters. This is a similar quality of fit to partial wave
analyses of NN elastic scattering data.

A technical detail is that normalisations of each set of
differential cross sections and integrated cross sections are
varied in accordance with their published normalisations.
This smooths out some scatter amongst the points, but
has negligible effect on fitted amplitudes. It turns out to
be unnecessary to allow normalisations of polarisation data
to adjust in this way.

Figure 10 shows the intensities of each partial wave in
the integrated cross section. They are plotted against the
mass above the Λ̄Λ threshold: ∆M = M − 2MΛ. These
intensities contain G2(s), i.e. the flux and phase space
factors and centrifugal barriers.

It is more instructive to view |fJ(s)|2, where the kine-
matic factor G2 is omitted. These are shown in Fig. 11.
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Fig. 11. Magnitudes of |fJ(s)|2, i.e. with the kinematic factor
G2(s) removed; a beam momentum of 1637 MeV/c corresponds
to ∆M = 71 MeV, M = 2302.5 MeV

Table 2. Spin weighting of amplitudes in integrated cross sec-
tions

Amplitudes spin factors
3S1, 3S1 → 3D1 3
3D1, 3D1 → 3S1 3/5
3P0 1/3
3P1, 3D2, 3F3, 3G4 1
3P2, 3P2 → 3F2 5/3
3F2, 3F2 → 3P2 5/7
3D3 7/5
3F4 9/7
3G3 → 3D3 7/9

One further factor is also removed. Each amplitude has
Clebsch-Gordan coefficients which affect the contributions
to integrated cross sections. These factors are listed in Ta-
ble 2 and are also factored out in drawing Fig. 11. The
results shows matrix elements squared, unencumbered by
kinematic factors or spin-coupling factors.

A question is how reliable these intensities are. A gen-
eral conclusion is that the final angular momentum state is
well determined by polarisations in the final state. Hence
3S1 → 3D1 and 3P2 → 3F2 intensities are well deter-
mined. In a variety of fits with different combinations of
amplitudes and different assumptions for the fitting func-
tions fJ(s) and centrifugal barriers, fluctuations < 10%
are observed. However, identification of the initial state
depends on polarised target data. Hence the intensities of
3F2 → 3P2 and 3D1 → 3S1 partial waves are well deter-
mined (±7%) at 1637 MeV/c, but their s-dependence away
from this mass is uncertain. Some limitations arise from

accurate measurements of differential cross sections and po-
larisations, but one should not draw conclusions from the
s-dependence of intensities for 3F2 → 3P2 or 3D1 → 3S1.
On Figs. 10 and 11, this s-dependence is dictated by the
centrifugal barriers.

The top row of Fig. 11 shows 1−− intensities. There is
a distinct maximum ∼ 60 MeV above threshold, i.e. at a
mass of 2290 MeV. It is stronger in 3D1 → 3D1 than in
3S1 → 3S1. This peak eventually requires interpretation
as a resonance.

The second row of Fig. 11 shows 2+ intensities. The
3P2 → 3P2 and 3F2 → 3F2 results are featureless, and the
latter is quite small. However, the 3P2 → 3F2 amplitude
grows quite strongly with mass. It is well determined by
polarisations in the Λ̄Λ final state.

The 3P0 and 3F3 intensities show distinct peaks which
will later be associated with known resonances in Crystal
Barrel I = 0, C = +1 amplitude analyses. The 3D3 → 3D3
and 3G3 → 3D3 intensities likewise show peaks which may
be associated with a known resonance. The 3G3 → 3D3
amplitude is well determined only by polarised target data,
so the peak in its intensity follows from the assumption that
it scales from the 3D3 → 3D3 amplitude. The shift between
the peaks arises from a mild sensitivity to differential cross
sections at high mass, and may not be reliable.

The 3P1 and 3D2 amplitudes ofFig, 11 drop fromthresh-
old and cannot be associated with resonant structure. How-
ever, the 3D2 amplitude is small, and it will fit with very lit-
tle change in χ2 to the known 3D2 resonance ρ2(2195) [16].
The 3F4 intensity rises steadily with mass and shows no
indication of the known f4(2300) resonance [17].

The peaks in 3P0, 3D3 and 3F3 fit naturally as reso-
nances. Figure 12 shows Argand diagrams. There are clear
loops for these partial waves. Table 3 shows fitted masses
and widths in columns 2 and 3. Errors cover both statis-
tical variations and systematic variations over a variety of
fits with different assumptions (e.g. concerning centrifugal
barriers and small amplitudes). In all cases, statistical er-
rors are roughly 35–50% of systematic errors. Around the
optimum, both mass and width show well defined parabolic
minima in χ2. For the 1−− resonance in Table 3, Γ0 of eqn.
(8) is 260 MeV and ΓΛ̄Λ = 15 MeV on resonance, leading
to a tabulated width of 275 MeV.

The next two columns compare with known resonances
observed in Crystal Barrel data [10, 16]. Parameters are
remarkably close. If the masses and widths of columns 4
and 5 are used in the fit, the change in χ2 is only 12, and
6 parameters become fixed. It therefore looks very likely
that the same resonances appear in PS185 data.

There is a further feature which agrees with earlier ob-
servation of the 3− resonance. In Fig. 11, there is a highly
significant 3G3 → 3D3 intensity. The requirement for this
amplitude arises from DNN and KNN data: dashed curves
on Fig. 8 show the worse fit without this amplitude. In [16],
a strong 3G3 resonance was likewise observed at 2255 MeV.
In this mass range, both a 3D3 and a 3G3 resonance are
expected in conventional quark models. So it is quite likely
that two unresolved 3D3 and 3G3 resonance appear in both
PS185 and Crystal Barrel data. In the Crystal Barrel anal-
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Fig. 12. Argand diagrams for fJ(s), i.e. after factoring out the
kinematic factor G(s)

Table 3. Columns 2 and 3 show resonance parameters from
PS185 data; columns 4 and 5 show comparisons with Crystal
Barrel results [10,16]

JPC M(MeV) Γ (MeV) M(MeV) Γ (MeV)
0++ 2314 ± 25 144 ± 20 2337 ± 14 217 ± 33
2++ 2387 ± 35 33 ± 100 – –
3++ 2334 ± 25 200 ± 20 2303 ± 15 214 ± 29
3−− 2278 ± 28 224 ± 50 2255 ± 15 175 ± 30
1−− 2290 ± 20 275 ± 30 – –

ysis, a second state coupling mostly to 3D3 was reported
at 2285 ± 60 MeV with Γ = 230 ± 40 MeV.

There is also a possible identification of the 2+ struc-
ture. There is a known f2(1950) [17] with a large width of
500 MeV. If it is substituted into the fit, there is almost
no change in χ2 and a small movement downwards of the
2+ resonance of Table 3 to 2362 MeV. It is possible that
this resonance is to be identified with the f2(2339) of Etkin
et al. in ππ → φφ [18]; its appearance in the Λ̄Λ channel
would not be surprising. If the f2(2339) is substituted into
the fit with the width reported by Etkin et al, χ2 changes
by < 5.

The peak in 3S1 and 3D1 at 2290 MeV requires a strong
phase variation. If the other peaks described above are
identified with known resonances in Crystal Barrel data,
it is inescapable that the 1−− peak is resonant. It would
be a new resonance. In the Crystal Barrel analysis of ωη,
ωπ0π0 and π−π+ channels, the 1−− amplitude was not well
defined in this mass range. A resonance at this mass is a
natural radial excitation of ω3(1670) [17] and ω3(1945) [16].

5 Some general remarks

In earlier work, attempts have been made to fit these and p̄p
elastic scattering data in terms of meson exchanges. There
is no conflict between this approach and the apppearance
of resonances. Meson exchanges can act as part of the driv-
ing forces which generate resonances. When a resonance
appears, the projection of the meson exchange into an indi-
vidual partial wave acquires the resonance phase through
re-scattering effects. A well known example of this is the
nucleon exchange term which partially drives the forma-
tion of the ∆(1232). Chew and Low showed in 1956 how
to include the nucleon exchange term in an effective range
formula which includes the resonance [19].

A little information can be added concerning p̄p →
Λ̄Σ0. Data for the integrated cross section for this process
were reported in [4] close to threshold. It is of interest to
use detailed balance as in Sect. 2 to derive the cross section
for the inverse process Λ̄Σ0 → p̄p. Does a cusp appear at
threshold? Results are displayed in Fig. 13.

Errors are sizable, but there is no clear evidence for
a cusp. The PS185 publication remarks that there is evi-
dence for strong P-waves very close to threshold. They are
reported to be even stronger than those in p̄p → Λ̄Λ. It
seems likely that they obscure the presence of a cusp. A
fit is shown using a sum of S and P waves, but there is
considerably flexibility in their relative contributions.

Further progress depends on more data. It would be
valuable to have polarised target data at other momenta,
particularly towards the top of the mass range, e.g. at
1990 MeV/c. In principle, such a measurement is feasible
at the new p̄p ring planned atGSI.With a frozen spin target,
such a measurement is technically straightforward. Using a
detector such as Crystal Barrel, it would also be possible to
make valuable polarisation measurements for channels such
as ωπ, ωη and 3π0, allowing a definitive conclusion to the
analysis ofCrystalBarrel data. If a trigger could be included
on K0

S decays and/or K0
L interactions in the detector, it

would open up the possibility of studying final states such
as KK̄, KK̄π and KK̄ππ over a wide mass range, and
hence extending the important LASS data, which run out
around 2100 MeV.

Fig. 13. Integrated cross sections for Λ̄Σ0 → p̄p deduced from
data of [4]; the full curve shows a fit to S and P waves, which
are shown individually by the dotted (S) and dashed (P) curves
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6 Summary

A partial wave analysis has been presented of all published
PS185 data. At 1637 MeV/c, the solution is unique, al-
though care is needed to restrict the amplitude for 3F2 →
3P2 so that it does not drift away to a large value. The anal-
ysis may be extended to cover all other momenta by making
the assumption that the 3D1 → 3S1 and 3D1 → 3D1 am-
plitudes are related to 3S1 → 3S1 simply by the centrifugal
barrier for the initial state. The same assumption is em-
ployed for initial p̄p states 3F2 and 3G3. Below 1637 MeV/c,
this assumption is not serious, since the centrifugal barriers
for the initial state suppress these amplitudes strongly.

There is direct evidence for a cusp at threshold in Λ̄Λ →
p̄p. This cusp needs to be included into the treatment of
the 3S1 partial waves.

There is evidence for large phase variations in several
partial waves in Fig. 12. If resonances are fitted to 0++,
3++ and 3−− partial waves, observed resonance parame-
ters are remarkably close to resonances reported earlier in
Crystal Barrel data. With that identification, a new 1−−
resonance is required at 2290 MeV. Also in 3P2 → 3F2,
there is evidence for a resonance around 2360 MeV which
fits well as the f2(2339) reported by Etkin et al.
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